

Application of Supercritical CO₂ in Enhanced Geothermal Systems: Calibration of Kinetic Rates from Batch Experiments

Feng Pan¹, Brian McPherson¹, John Kaszuba²

I. The University of Utah; 2. The University of Wyoming;

February 26, 2015

Acknowledgements

- U.S. Department of Energy, Geothermal Technologies
 Program Award # DE-EE0002766
- All project partners / collaborators:
 - University of Wyoming
 - Los Alamos National Laboratory
 - Idaho National Laboratory
 - Altarock Energy
 - Greenfire Energy
 - Many individuals...

Introduction

- Advantages and disadvantages of CO₂ as a working fluid in EGS reservoirs;
- Previous experimental and numerical studies on the chemical reactions with CO₂ injection in EGS reservoirs.
- The data of kinetic rates of mineral reactions are sparse and less consistent at the elevated temperature and pressure in CO₂-EGS.

• The objective of this study to calibrate and evaluate the kinetic rates of minerals from the batch experiment data.

Methods and Materials

Batch Experiments

- Five hydrothermal fluid-rock experiments (designed to emulate the geothermal conditions)
- Baseline water-granite experiment
- Two water-granite-scCO₂ experiments
- Two water-epidote-granite \pm scCO₂ experiments

Numerical Tools

- Reactive transport model: TOUGHREACT code
- Parameter estimation tool: iTOUGH2-PEST

Experimental Apparatus

- Rocker bombs
- Flexible Au-Ti reaction cells

Supercritical CO2

Synthetic Water and Rock

Experimental Design

Experiments designed to emulate geothermal conditions:

Experimental Conditions

× Experimental conditions: 250 ° C, 250-450 bars

Experiment	Water + Granite	Moderate pH Water + Granite + scCO ₂	Low pH Water + Granite + scCO ₂	Water + Granite + Epidote	Water + Granite + Epidote + scCO ₂
Initial pH	5.6	5.7	3.9	5.07	5.15
Temperature ° C	250	250	250	250	250
Pressure (MPa), Pre- Injection	25.3	25.0	25.2	~24.9	~25.3
Pressure (MPa), Post-Injection		30.7	44.8		~33.8
Initial Water/Rock Ratio	19.3	20.0	19.0	20.0	20.4
Total Reaction Time (days)	42.7	72.0	74.8	35.8	54.8

Mineral components and initial surface area

Elemental Weight Percent of Mineral Reactants (Wt% oxide)									
Component ^{a,b}	Quartz	Oligoclase	K-Feldspar	Biotite	Epidote				
	(Qtz)	(Olg)	(Kfs)	(Bt)	(Ep)				
P2O5	DL	DL/NM	DL	DL/NM	DL				
MnO	DL	0.01/DL	0.00	1.03/0.87	0.09				
Fe2O3	0.08	0.12/0.04	0.19	22.84b	12.81				
FeO				17.65c					
MgO	DL	DL/DL	DL	13.78/13.82	DL				
SiO2	97.79	64.29/61.83	62.48	36.17/38.21	34.70				
Al2O3	0.59	24.47/24.25	18.92	11.56/11.33	22.63				
CaO	DL	5.23/4.65	0.22	0.10/0.01	23.69				
TiO2	0.03	0.02/DL	0.01	2.50/2.12	0.12				
Na2O	DL	8.36/8.67	2.35	0.60/0.43	DL				
K2O	DL	0.71/0.50	12.60	8.93/9.37	DL				
F	NM	NM/DL	NM	NM/2.57	NM				
CI	NM	NM/DL	NM	NM/0.04	NM				
Total	98.48	103.37/99.94	96.86	97.50/96.44	94.04				
Source	Unknown	Mitchell County,	Unknown	Ontario, Canada	Unknown				
		North Carolina							
Surface Area of Unreacted I	Powders (m ² /g) ^c								
EXP-1	0.3367 ± 0.0028	0.6303 ± 0.0070	0.4408 ± 0.0208	1.5652 ± 0.0420	N/A				
EXP-2	0.3367 ± 0.0028	0.6303 ± 0.0070	0.927 ± 0.0385	1.5652 ± 0.0420	N/A				
EXP-3	0.3367 ± 0.0028	0.6303 ± 0.0070	0.4408 ± 0.0208	1.5652 ± 0.0420	N/A				
EXP-4	0.7124 ± 0.0031	0.6303 ± 0.0070	0.927 ± 0.0385	1.5652 ± 0.0420	0.6327 ± 0.0617				
EXP-5	0.7124 ± 0.0031	0.6303 ± 0.0070	0.927 ± 0.0385	1.5652 ± 0.0420	0.6327 ± 0.0617				

From Lo Re et al. (2014)

Aqueous Geochemistry

Time (hours)	pH (STP ^{)a}	pH (in-situ) ^b	F	CI	SO ₄	Na	K	Ca	Mg	Fe	SiO ₂ (aq)	Al	Mn	ΣCO ₂ f, bench	ΣCO ₂ ^{g,h} , in-situ	Charge Balance
Initial Water ^c	5.6 ± 0.1	6.4	0.01	161	0.81	130	8.8	1.0	0.8	<0.00002	3.4	0.0022	0.00012	0.10	0.10	-6.6%
25.1	5.7 ± 0.1	6.6	0.04	161	0.87	135	9.7	1.4	0.3	<0.00002	6.0	0.0063	0.00191	0.10	0.10	-4.5%
41.5	5.4 ± 0.1	6.6	0.05	158	0.85	129	9.4	1.5	0.2	<0.00002	6.8	0.0049	0.00080	0.34	0.34	-6.0%
113.5	5.6 ± 0.1	6.5	0.05	158	0.78	130	8.3	1.6	0.2	<0.00002	7.4	0.0085	0.00066	0.11	0.11	-5.7%
354.0	5.6 ± 0.1	6.5	0.06	157	0.75	130	9.1	1.7	0.2	<0.00002	7.6	0.0091	0.00037	0.16	0.16	-5.0%
640.9	5.4 ± 0.4	6.5	0.02	149	0.69	135	8.2	1.5	0.2	< 0.00002	8.3	0.0061	0.00076	0.46	0.46	-1.5%
1023.6	5.5 ± 0.4	6.4	0.05	161	0.70	128	9.4	4.9	0.3	<0.00002	8.1	0.0066	0.00286	0.27	0.27	-4.7%
Quench ^d	5.1 ± 0.1	5.1	0.04	148	0.71	122	8.2	1.8	0.2	<0.00002	7.5	0.0081	0.00378	0.02	0.02	-5.5%
Uncertainty ± 1σ			0.02	10	0.04	4	0.4	0.3	0.1		0.5	0.0006	0.00007	±3.0%		
Predicted Equilibrium Value ^e	_	6.2		142	0.64	132	10.3	0.1	0.001	0.005	6.2	0.003	_		0.1	
EXP-2: Water chemistry (mm	pH (STP ^{)a}	pH (in-situ) ^b	+ granit	CI	SO ₄	Na Na	K	Са	Mg	Fe	SiO ₂ (aq)	Al	Mn	ΣCO ₂ f,	ΣCO ₂ ^{g,h} , in-situ	Charge Balance
Initial Water ^c	5.7 ± 0.1	6.4	0.01	149	0.73	123	8.9	1.4	0.7	<0.00002	3.6	0.0019	0.00013	0.10	0.10	-5.3%
22.6	6.0 ± 0.2	6.7	0.01	137	0.62	123	8.1	1.8	0.2	<0.00002	5.8	0.0036	0.00061	0.56	0.56	-1.3%
49.9	5.4 ± 0.1	6.5	0.04	140	0.67	127	10.7	2.4	0.2	<0.00002	6.7	0.0038	0.00078	0.65	0.65	0.5%
117.9	5.3 ± 0.1	6.5	0.04	137	0.74	132	9.4	1.6	0.1	<0.00002	7.6	0.0057	0.00079	0.49	0.49	2.1%
356.7	5.5 ± 0.3	6.5	0.03	136	0.53	130	8.9	1.8	0.2	<0.00002	7.7	0.0044	0.00062	0.57	0.57	2.2%
693.0	5.4 ± 0.1	6.5	0.02	137	0.68	131	8.9	1.2	0.2	<0.0004	8.6	0.0064	0.00122	0.36	0.36	1.5%
700.3, Inject scCO ₂																
718.2	5.2 ± 0.2	4.3	0.02	135	0.45	134	9.1	1.1	0.5	<0.0004	9.0	0.0069	0.01281	13.35	2406	3.1%
742.3	5.2 ± 0.1	4.4	0.02	137	0.37	131	9.2	0.9	0.6	<0.0004	8.8	0.0033	0.01095	15.44	2405	1.3%
814.8	5.2 ± 0.1	4.4	0.02	136	0.39	135	8.9	0.9	0.6	<0.0004	9.3	0.0009	0.00741	15.34	2406	3.0%
1053.7	5.3 ± 0.1	4.4	0.02	137	0.28	136	10.7	1.0	0.6	<0.0004	8.7	0.0007	0.00640	14.29	2404	3.6%
1318.6	5.6 ± 0.1	4.7	0.02	137	0.30	134	10.3	1.1	0.5	<0.0004	8.2	0.0004	0.00525	17.76	2405	2.4%
1726.5	5.3 ± 0.1	4.4	0.02	125	0.19	129	10.6	1.8	0.7	<0.0001	7.5	0.0008	0.00424	19.24	2414	6.3%
Quench ^d	6.1 ± 0.3	6.3	0.03	126	0.92	130	9.7	2.5	0.7	<0.0001	7.3	0.0018	0.00861	6.83		5.2%
Uncertainty ± 1σ			0.02	10	0.04	4	0.4	0.3	0.1		0.5	0.0006	0.00007	±3.0%		
Predicted Equilibrium Value ^e , Pre-Injection	_	6.2		136	0.65	126	9.8	0.1	0.001	0.004	6.2	0.003	-		0.1	
Predicted Equilibrium Value ^e ,	_	5.9		136	0.74	186	10.9	0.1	0.007	0.009	6.1	0.002	_		2380	

From Lo Re et al. (2014)

Post-Injection

Kinetic Mineral Dissolution Rates

$$r_m = A_m \cdot k_m \cdot \left\{ 1 - \left(\frac{Q_m}{K_m} \right)^{\mu} \right\}^{\eta}$$

where: m is mineral index, r_m is the dissolution/precipitation rate, A_m is the specific reactive surface area, k_m is the rate constants, K_m is the equilibrium constant for the mineral-water reaction, Q_m is ion activity product, μ , η are two positive numbers determined by experiment and usually taken equal to one.

Batch Simulations

- Mimic the batch experiments
- Primary minerals and initial volume fractions;
- Possible secondary minerals selection based on initial equilibrium batch modeling;
- Kinetic properties at multiple mechanisms (neutral, acid, and base)
- Specific reactive surface area from BET measurements at laboratory;
- Thermodynamic database: EQ3/6 database;
- Simulation period: 2000 hours;
- CO₂ injection with a small amount for an hour around 670-700 hours.

Mineralogical Composition

Mineral	Chemical composition	Initial volume fraction of minerals						
		EXP-1	EXP-2	EXP-3	EXP-4	EXP-5		
Primary:	·							
Quartz	SiO_2	0.3184	0.3189	0.3178	0.1805	0.1805		
Oligoclase- uwy ^a	$Na_{0.77}Ca_{0.23}Al_{1.23}Si_{2.77}O_{8}$	0.3184	0.3189	0.3187	0.1805	0.1805		
Albite	NaAlSi ₃ O ₈	0.0805	0.0804	0.0806	0.0456	0.0456		
K-Feldspar	KAlSi ₃ O ₈	0.2472	0.2469	0.2474	0.1401	0.1401		
Annite	KFe ₃ AlSi ₃ O ₁₀ (OH) ₂	0.0145	0.0143	0.0145	0.0082	0.0084		
Phlogopite	KAlMg ₃ Si ₃ O ₁₀ (OH) ₂	0.0209	0.0206	0.0209	0.0119	0.0121		
Epidote	$Ca_2Al_2(Fe^{3+}Al)(SiO_4)(Si_2O_7)$ O (OH)				0.4331	0.4327		
Porosity	-	0.9814	0.9815	0.9813	0.9877	0.9835		
Calcite	CaCO ₃	0.0	0.0	0.0	0.0	0.0		
Magnesite	MgCO ₃	0.0	0.0	0.0	0.0	0.0		
Illite	(K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]	0.0	0.0	0.0	0.0	0.0		
Smectite	$K_{0.04}Ca_{0.5}(Al_{2.8}Fe_{0.53}Mg_{0.7})(Si_{7.65}Al_{0.35})O_{20}(OH)_4$	0.0	0.0	0.0	0.0	0.0		
Kaolinite	$Al_2Si_2O_5(OH)_4$	0.0	0.0	0.0	0.0	0.0		
Chlorite	$Mg_{2.5}Fe_{2.5}Al_2Si_3O_{10}(OH)_8$	0.0	0.0	0.0	0.0	0.0		
Muscovite	$KAl_3Si_3O_{10}(OH)_2$	0.0	0.0	0.0	0.0	0.0		
Hematite	Fe ₂ O ₃	0.0	0.0	0.0	0.0	0.0		
Dolomite	CaMg(CO ₃) ₂	0.0	0.0	0.0	0.0	0.0		
Ankerite	$CaMg_{0.3}Fe_{0.7}(CO_3)_2$	0.0	0.0	0.0	0.0	0.0		
Dawsonite	NaAlCO ₃ (OH) ₂	0.0	0.0	0.0	0.0	0.0		
Siderite	FeCO ₃	0.0	0.0	0.0	0.0	0.0		

a) Oligoclase at specific ratio used for batch experiment by University of Wyoming.

Kinetic Rate Parameters

Mineral	Nei	ıtral	Acio	d Mechai	nism	Base mechanism		
Willierur		anism	71010	i ivicciiui		Dust	e meena	
	logk ^a	E _a b	logk ^a	E _a b	n ^c	logk ^a	E _a b	n ^c
Primary:								
Quartz	-13.99	87.7	-	-	-	-	-	-
Oligoclase	-11.84	69.8	-9.67	65.0	0.457	-	-	-
Albite	-12.56	69.8	-10.16	65.0	0.457	-15.6	71.0	-0.572
K-Feldspar	-12.41	38.0	-10.06	51.7	0.500	-21.2	94.1	-0.823
Annite d	-12.55	22.0	-9.84	22.0	0.525	-	-	-
Phlogopite	-12.40	29.0	-	-	-	-	-	-
Epidote	-11.99	70.7	-10.60	71.1	0.338	-17.33	79.1	-0.556
Chlorite	-12.52	88.0	-11.11	88.0	0.500	-	-	-
Calcite	-5.81	23.5	-0.30	14.4	1.000	-	-	-
Secondary:								
Calcite	-5.81	23.5	-0.30	14.4	1.000	-	-	-
Magnesite	-9.34	23.5	-6.38	14.4	1.000	-	-	-
Illite ^e	-13.55	22.0	-11.85	22.0	0.370	-14.55	22.0	-0.200
Smectite	-12.78	35.0	-10.98	23.6	0.340	-16.52	58.9	-0.400
Kaolinite	-13.16	22.2	-11.31	65.9	0.777	-17.05	17.9	-0.472
Chlorite	-12.52	88.0	-11.11	88.0	0.500	-	-	-
Muscovite	-13.55	22.0	-11.85	22.0	0.370	-14.55	22.0	-0.220
Hematite	-14.60	66.2	-9.39	66.2	1.000	-	-	-
Dolomite	-7.53	52.2	-3.19	36.1	0.500	-5.11	34.8	0.500
Ankerite ^f	-7.53	52.2	-3.19	36.1	0.500	-5.11	34.8	0.500
Dawsonite	-7.00	62.8	-	-	-	-	-	-
Siderite	-8.90	62.8	-3.19	36.1	0.500	-	-	-

Note: Kinetic rate parameters from Palandri and Kharaka (2004);

- a) logk: kinetic rate constant k at 25 °C (mol/m²/s);
- b) E_a : activation energy (KJ/mol);
- c) n: power term with respect to H⁺;
- d) set to Biotite; e) set to Muscovite; f) set to Dolomite

Calibration

Parameters:

- kinetic rate constant
- reactive surface area

Minerals:

- Albite and Oligoclase against measured Na+ concentration
- K-feldspar against measured K+ concentration
- Epidote against measured Ca2+ concentration

Methods:

 Parameter estimation tool (iTOUGH2-PEST) coupled with TOUGHREACT model

Measured and simulated Na+ concentration over time associated with calibration.

Measured and simulated K+ concentration over time associated with calibration.

Measured and simulated Ca2+ concentration over time associated with calibration.

Measured and simulated pH values over time as a result of calibration.

Calibrated kinetic rate constants of minerals Albite, Oliogclase, K-Feldspar, and Epidote for EXP-1 to EXP-5.

2.6	K ₂₅	Calibrated K ₂₅ (mol/m ² /s)							
Minerals (mol/m ² /s)		EXP-1	EXP-2	EXP-3	EXP-4	EXP-5			
Oligoclase	0.145e-12	0.100e-12	0.100e-12	0.100e-12	0.100e-12	0.100e-12			
Albite	0.275e-12	0.300e-12	0.300e-12	0.300e-12	0.300e-12	0.300e-12			
K-Feldspar	0.389e-12	0.700e-10	0.300e-10	0.200e-10	0.220e-11	0.200e-11			
Epidote	0.102e-11				0.100e-11	0.260e-10			

Calibrated reactive surface area of minerals Albite, Oliogclase, K-Feldspar, and Epidote for EXP-1 to EXP-5.

24.	Measured	Calibrated surface area (cm ² /g)							
Minerals	Surface area (cm²/g)	EXP-1	EXP-2	EXP-3	EXP-4	EXP-5			
Oligoclase	6,303	6,000	6,000	6,000	6,000	5,670			
Albite	9,270 (EXP-2, 4, 5) 4,408 (EXP-1,3)	4,500	9,300	4,500	9,300	9,300			
K-Feldspar	9,270 (EXP-2, 4, 5) 4,408 (EXP-1,3)	10,000	50,000	9,000	14,000	22,000			
Epidote	6,327				6,400	5,600			

Summary

- Overall, the simulated major cation concentrations for the experiments without CO₂ injection have better agreement with measured values than simulations of experiments with CO₂ injection.
- The calibrated reactive surface area are several times larger than the BET measured values for K-feldspar. A longer reaction period may be necessary for batch experiments to provide more effective calibration of mineral reactive surface areas and kinetic parameters.
- Simulated pH values for calibrations generally exhibit good agreement with measured values.
- Calibrated kinetic parameters can be used for related geochemical simulations in EGS reservoirs at elevated temperature and pressure.

Questions?

